Geometry

Name ______ Date ______ Period _____

Chapter 6

Ch 6.1 Perpendicular and Angle Bisectors

Perpendicular Bisector Theorem	
Converse of Perpendicular Bisector Theorem	

a) EG =	FH =	b) x =	CD =	
E F 9.5 G		A	D	
What is the dista	ance from a point to a line? _	 		Q P
Angle Bisector:				
Angle Bis	ector Theorem			

Practice:

Write an equation of the perpendicular bisector of the segment with endpoints P(-2, 3) and Q(4, 1).

Ch 6.2 Bisectors of Triangles

Perpendicular bisectors of a triangle intersect at the _____

Circumcenter is equidistant from all ______.

Circumcenter Theorem

Locations of Circumcenter

Practice:

Find the coordinate of the circumcenter of the triangle with the vertices: O(0, -9), Y(0, 0), Z(8, 0)

							•							
						_								
							_							
						_								
														ь.
	_				_	_		_	_	_	_	_		
•						 								
•														
•														
-														
-														
•														
-														
-														
-														
-														

Angle bisectors of a triangle intersect at the _____

Incenter is equidistant from all ______.

Incenter Theorem

Practice:

MP and LP are angle bisectors of $\Delta LMN.$ Find each measure.

1) the distance from P to MN

2) *m∠PMN* =

Ch 6.3 Medians and Altitudes of Triangles

Median:_____

The three medians of a triangle meet at the _____

|--|

Practice:

If DC = 21 and XE = 4, solve for the following lengths.

CX =

AE =

Big Ideas Ch 6 Notes

Practice:

Find the coordinates of the centroid of Δ RST with vertices R(2, 1), S(5, 8), T(8, 3).

P

Practice:

Find the coordinates of the orthocenter of ΔXYZ with vertices X(-5, -1), Y(-2, 4), Z(3, -1).

The **coincident points** you should know right now, and how to find each of these points.

Ch 6.4 The Triangle Midsegment Theorem

Determine the values of x, y, and z.

Solve for JL, PM, $m \angle MLK$.

Exercise:

The vertices of \triangle RST are R(-7, 0), S(-3, 6), and T(9, 2). M is the midpoint of RT, and N is the midpoint of ST. Show that MN || RS and $MN = \frac{1}{2}RS$.

Ch 6.5 Indirect Proof and Inequalities in One Triangle

Direct Proof flowchart:

Given:Any triangleProve:A triangle cannot have two obtuse angles.

1) Identify the conjecture to be proven:

2) Assume the opposite (negation) of the conclusion is true.

3) Use direct reasoning to show that the assumption leads to a contradiction.

4) Conclude that since the assumption is false, the original conjecture must be true.

Try this:

Order the angles from smallest to largest. Then, using the angle order, can you order the side lengths from smallest to largest?

Exercise:

1) List the angles from smallest to largest

2) List the sides from shortest to longest.

A triangle can be formed by 3 segments, but not every set of three segments will work.

How are you supposed to know?

Triangle Inequality Theorem

Can you make triangles out of the following lengths?

a) 8, 12, 21

b) 6.2, 7, 9

c) 4.3, 5.7, 10

Exercise:

The figure shows approximate distances. What is the range of distances from San Francisco to Oakland?

Ch 6.6 Inequalities in Two Triangles

Definition:

When two sides of a triangle stay the same length and the third side changes length, it is called ______

If the included angle of the two sides gets bigger, then the third side gets _____

Example:

Which is greater? Side JM or ML?

Problem:

Two groups of bikers leave the same camp heading in opposite directions. Each group travels 2 miles, then changes direction and travels 1.2 miles. Group A starts due east and then turns 45° toward north. Group B starts due west and then turns 30° toward south. Which group is farther from camp? Explain your reasoning.

